
,/. J’, / /’, ,’

,
. .

.

Analyzing Software Errors in Safety-Critical,t
]{~l-rlbc;ddcd ElyStCmSt

Robyl] 1{. 1 Jlltz*

Jd l’ro]m]sio]l ld~oratmy
California l]]stittut(! of ‘1’cchnology

l’asadcIq CA 91109

l“cbl’uary 24, 1994

‘J’llis IJa})cr arlalyzcs t h e mot

critical, clnbecldcd systems. ‘J’IIc

A bstrad

causes of safety-rdatccl softwa,m faults ill safety -
rcsults show that software faults idmitif[ccl as po-

tentially hazardous to tltcsystmm arcdistrjbutcd solnewllat djffcrcnt]y ovm l,llc set c)f
}jc)ssilJle c]]orca l]sestl]all]lc)1]-safcty-rclatccl softwarcfaults. Safety-rdatcd softwarccr-
rcm arcs how]l to ariscmost, commonly fro]n (1) disc. repa]lcies bctwcc]l tlledocumcntcd
rcquirmnmlts spcc.ific.atjo]ls arid tllc rcqui]mnmlts NCCXICC1 for corrcc.t fu~lctio]lin?; of tile
systmn Md (?,)]]lis~l]](lersta]lclillgs c)f t,}ic software’s i]itcrfacc With tile rest of tllc sys-
t,c]rl. ~1’hc pal)cr uses tllesc results to ?;uidc tllc idc]ltificaticj]-l of strategies tc)]~rcvcvlt
sur.11 errors in otllcr similar s.ystcms. ‘J’}Ic goal is to rcducc safety-rdatcd softwarccrfors
Fi]ld to CII?l?LIICC ~hC! SafCty Of COI1l])]CX, Cllllldd(!d S~StCII)S.

1 0 ln~roduct)ion

‘1’lIis paper examines 387 software faults uncovcmd during i])tcgration and systc)n lmtiI)g
of two spacecraft, Voyager and Cal i lco, ‘J’l)e sta)ldard IIlltlt clcfi]litions of a jculi a s ‘(a
]nar]ifcstation of an error in software Syllonylnous wit}) L1/g;” of a]) cmor as “]]u]narl

actio]l tJIat rcsu]ts i]] so f tware co])taining a fault;’) and of a jailurc as ‘(an cwcIIt in whicl) a
systcln 01 systcm co]n])oIIc]It clocs not])crfor]n a r equ i red functioI] witlli]] s])ccificd]ilnits’>
alc used IIcm [7, 8]. Eacl] of tl)c 387 software faults was documented at tl]c ti]nc of discovery
by a fc)r]n dcscribil]g the anomaly or failure tl}at indicatd tllc cxistcu]cc of a softwtirc fault.
‘J’IIc form also rccorclcd t h e subscqucIIt analysis aIId tlIc mrrcctivc actions ta.km].

As part of the starldard procdurc for corrccti)]g cad] rcportcxl software fault, tl)c failure
cffcc.t of cacll is classified as negligible, sig]lifica]lt, or catastrop]lic. ‘1’hose c.lassifid as signif-
icar)t or catastrophic arc i]]vcstigatccl by a systmns safety arlalyst as rcprcsc]]ti]]g])otcntia.1

..-
“Aut}lor’s]nai]ing address is l)cl~t of Com],ut,cr Sciculc.c, Iowa State U]iivcrsity, A~ncs, IA 50(IJ 1. ‘1’lic

rcmar-c.11 dcscribd in tl)is l)a]]cr was c a r r i e d o u t l)y (lIC Jc.t I’ro])\llsioIl l,al)cmatcmy, {;alifcmlia llistitutc o f
‘]k.]lllO]C)gy, 1111(]IY a COlltract Wit]l NASA.

1

.

safety IIazards [1 5], For this study tlIc 74 (of 134) software faults cm Voyager and 121 (of
253) scjftwarc faults on Galileo docummtcd as Ila.viIlg potcl]tially sigI1ificant or catastrophic
cficcts arc classified as safety-mlatcd.

‘J’IIc sl)accc.rafts’ software is safety-critical ill that it lno]-liters and controls colnpollmlts
Lllat CaII h involved in hazardous systc]n bcllavior [1 3]. ‘1’lIc software Xnust cxccutc in a
systcIn col]tcxt withcmi contributi~]g u~lacccl)tal~lc r isk.

ltach spacecraft involves clnbcddccl software distril~utcd on several different flight comput-
ers. Voyager l)as rouglIly 18,000 lillcs of source coclc; Galileo has over 22,000 [20]. ~~InlJCddCd
software is software that ruIIs 011 a colnputcr SyStCII-I Lllat is integral to a la.r.gcr systcm whose
l)rilnary lmrposc is l)ot cojnputationa] [7]. ‘J’lIc s o f t w a r e ollboard tllc s~)acccraft c o n t r o l s
tlIc cllginccring and scicncc acquisition) l)roccsscs required for il]tc]}~la]lc:tary lnissions. ‘J’hc
software 011 botlI spacecraft is lligl)ly i;]tcractivc ill tcrJns c)f the dcgrcc of]ncssagc-passing
alnollg systcm compollcnts, LIIC need tc) res})ond ill real-tiInc to monitoring of tlIc harclwarc
and cnvirol)mcnt} ant] tl]c complex tilninr; issues among parts of t}lc systcm. ‘J’l Ic software
dcvclopmcl)t for ca.cll sl)acccraft illvo]vcd)nultip]c teams wcnkilig for a period of years.

‘J’IIc purpose of this paper is tc) iclcl]tify tlIc extent and ways in w}]icll the cause/effect
relationships of safety-rclatccl software crrom difIcr from tl}c cause/cfIcct rclatiollsllil)s of non-
safety-related software errors. l’rclilnillary results were reportccl in [1 6]. III particular, tllc
analysis slIows that IIulnal] errors ill idclitifying or ulidcrstalldil)g func t iona l and iljtcrfacc
rcquirmncnts frcqucllt]y lcacl to safety-related software faults. ‘J1lIi S distinction is used to
guide tllc idc]ltificatioll of error mccllallis]ns tllmugl) which the coInmoII human allcl process
causes of the safety-rc]atccl software faults stuclicd lIcrc call bc targct,ccl during dcvclopmcnt.
‘-1’lJc goal ;s to jml)rovc systcm safety by Illlclcrstzill(lillf; and, where possible, Ycmovillg tllc
prcval cni sources of safct y- rcl atccl software crrols.

‘J’IIc pa})cr is organizcc] as fcdlows, Scctioll 11 dcscril)cs tllc mctllodo]ogy usml. Section 111
}ncscnts IJlc rcsu]t,s of t,lIc analysis. Scctioll IV indicates lIOW these rmults fit into t}lc context
of ~)rior work on software errors. Scctiol] V discusses some pc)ssil~lc strategies for rcducil]g
safety-rc]atccl software cmors usi]lg tllc currclit results. Scc.tiol) VI pmvidcs a sulnma~y allcl
idmltifics future work.

11. Methodology

A. Overview

‘J’IIc study dcscribccl lIcrc cllaractcrizcs tllc root causes of the safety-rc>latcd software faults
cliscovcrccl cluring integration and systcm tcsti]ig. ‘J ‘IIC rcccnt work lJy Nakajc) aIId Kumc; on
software error cause/cflcct rclationsljil)s offers a.11 apl)ropriatc fralncwork for classifying t}ic
software errors [1 8]. ‘J’}lcir work is cxtcmdcd IIcrc to account for t))c aclditiona] coln])lcxitics
o p e r a t i v e ill large, safc:ty-critical, c]nbcddccl systcll IS wit]) cvolvillg rcxluirc]ncnts drivcll by
IIarclwarc and cl]vironlnclltal issues.

}’rcvious studies of software errors have dealt primarily with fairly silnplc, IIoII-cInbccldcd
s y s t e m s ill falniliar a~)plicatio~) clomaills (SCC: Scctiol) IV for a cliscussiol]). ltcquircmmts
s~>cc,iflcatiolls il] t,l Icsc st,udics .gcIIcr:illy lIavc bccII assu Incd to be correct, ancl safety issues
IIavc IIot b e e n clistinguis]lccl froln prograln corrcctl]css. ‘J’lIc wc)rk ~)rcsclltcrl lIcrc illstcad

2

PICIgI m Fao]l

i

}Iutnw km
(RClr)t Cklsc)

v

PIOC2SS Flaws

,

I
I (Control of Software Complexity

+ lnadquacics in Con]n]onication/

I)WC]OJ)IIK.11(Methods)

]“igurc 1: Analyzing ~ausc/1’;ffcct l{clatim)sllips for Safety-l{clatcd Software Errors

builds on tl]at in [18] to al)alyzc software mm’s i~l safety-critical, cmIJcdclcd syskms wit]]
cvol vi] Ig rcquircrn cnts.

Nakajo and Kumc’s classif icat ion sclIcmc al]alyzcs three points i~l the pat]) from a. soft-
ware defect backwards to its sourcm. ‘J’]lis a,pl)roac}l allows classification not only of tbc
doc.ulncni, cd prc)gram fault (tllc lna.nifcstation of all error i]] tllc software, c.g; ., an incorrect
i]ltcrfacc), but also of tllc carlicv IIllma]] error (Lllc root c.dust, e.g., a ll~istlllcl(>rstallclillg; of
all intcrfacc specification), al]d of tllc even-car]icr l) IWC,CSS flaws that cent, ributc to t}lc likc]i-
llood of tlIc error’s occurrence (e.g., illaclcquatc cc)lllllllll)icatioll hctwccn systems cnginccring
al]d software dcvclopmcnt tcalns). IOgurc 1 presents a sulnmary of these t]lrcc points ill
tl]c cause/effect analysis. ‘J’IIc c]a.ssificatio]] SCIICIIIC tl)us leads backwards ill tilnc from tllc

ohscrvcd software fault to an analysis of the mot cause (usually a c(,]~l*],L~I)ict,tio]l error or i?n
error ill recognizing or deploying rcquirclncl]ts), to a]) anal ysis of the softwajm dcvcloplncIlt
~)roc,css. An overview of the classification SCIICIIIC, acljustcd to tl)c IICCCIS O(safety-critics],
c?nbcddccl software, follows.

● l’rogra?n I’aults (I)ocumcntccl Softwalc ljrrors)

A,

11.

c.

IIltcrllal Faults (e.g., syntax)

lntcrfacc Faults (illtcractions w i t h ot]]cr systcm coml)oncnts, such as trallsfcr o f
data or col]trol)

IPullctiona]]“aults (operating faults: o]nissio]l o r u]l]Icccssary opcratioIls; condi -
iio])al faults: incorrect col]clitio]] or li]])it va]ucs; Lcl]avioral faults: i]]corrcct bc-
IIavior, not conforming to rccluirclncnts)

● 1 luman l{;rrors (Itoot Chuscs)

A . ~odi~lg or Ecliting Errors

\

●

131.

132.

c l .

C2.

~ommunication ltrrors Wit}lin a TcaIn (Illislllldclsstallclillg software interface spec-
ifications)

communication Errors 1 lctwccn ‘lkams (Illisllllclcrstarl ding harclware iIjterfacc spec-
ifications or other team’s software spccificatiolls)

l?rrors in ltccognizing l{ccluircmcnts (lllisllllCIC:lstalldiIlg specifications or problem
domain)

ltrrom in ljcploying Rcquircmcl]ts (problems ilnplcmcl]ting or translating rcquirc-
lncnts into a dcsigll)

l’roccss F l a w s (1’laws ill Col]trol of SystcIn ~omplcxity + lnaclcc]uacies
cation or 1 lcvclopmcnt Mcthocls)

A. IIladcquatc ~odc l~lspcction slid ‘1’csting Methods

B].

112.

c1 .

C2.

IIladcquate lntcrface Specifications -i lnadcquatc ~ollll]lllllicatiorl
ware developers)

in ~onlmuni-

(alnong soft-

]naclcquatc Intcrfacc Spccificatiol]s + lnadcquatc ~omlnullication (Lctwccn soft-
ware and II ardware clcvclopcrs)

llcc]uircmcnts Not lclcntifiecl or UI1dcrstood -I lncolnplcte l)ocumcntation

l{cquircmcllts Not]clcntificd or lJII(ICMOOCI -I llladcquatc l)csign

IIy colnparing common error mccllanislns for tllc software faults identified as potentially
hazardous with those of tlIc otlIcr software faults, tl]c prevalent root causes of the safcty-
rclatcd program faults arc isolated, ‘J’lIc classific.atiol] of tllc sourcm of error is tllcn applied
}ICI’C to determine countcrrncasurcs wl]ic~l lnay IIrcvcnt similar error occurrences in other
safety-critical, cmbcddcxl systems. ‘J’his paper thus uscs tl]c classification sclIcmc to asscmb]c
an error profile of safety-related software crrmx and to idcIltify dcvcloIHncnt mcthocls by
wllicl] tlIcsc sources of error lnay be ab]c to bc controlled ill silnilar systems.

Il. Classification Critcra

l!acll program fault was classified al)cl error causes a.ssigllcd based on tlIc iIJ formation con-
tained ill t}lc s tandard report ing form that doc.unlclits cacll fault found clurillg i])tcgration
and system testing. ~’his one-page form illcludcs three textual clcscril)tions whic]l served as
tllc primary source for the classification of the fault. ‘J’IIc first description is of the observed
]JroblcIn or f a i lu re , wr i t t en by t,lIc indiviclua] who ohscrvcd it duril~g intct;ration or systcln
tcstil]g. g’he second description is a later aI)alysis of tllc error by the individual rcsponsib]c
for tllc Inodulc or coInpoIIcIIt ill w})ich tllc problcIn occLIITcd. ‘1’llis aIlalysis Inay also cx~)alld
or clarify tlIc initial dcscriptio~] of the prolJlcIn by tllc originator. ‘J’IIC third part of the form
describes tl]c corrective action taken to fix tllc PI”O1.J]CJII (e. g., a software and documc Iltation
cllallgc). It also dcscribcs the test result, inspection, or review that confirIns tlIc adequacy
of tllc correction to prevent rccurrcncc. ~’llcrc arc also several cllcck-off boxes 011 the form,
but tllcsc refer primarily to l~ardwarc issues (cog,, vibratim) tcstillg, j)iccc-~mrt failure),

Additic))lal pages (analysis results, test data, related Inmnos) arc solnctimcs attacllccl to
t}lc form during tllc process of analysis and correction. ‘J’his additional information was

4

valuab]c in the study, as it provided insight into the huma~) errors and process wcakncsscs
tlI at tlIc spacecraft cngillccrs and programmers saw.

in gcnmal, the prilnary criteria for classification was the clocumclItcd judglncnt of the
individuals who analyzed the cmor and wdidatcd that tho rcquirccl change in fact prcvcntccl
the Iccurrcncc of the anolnaly, Occasionally, ovcrlapJ)ing faults or CYIOYS were clocuIncntcd
oIi a sillglc form (c.g, both an intcrfacc fault and a functio]]al fault). in t,hosc cases, the
classifica.tioll reflects tllc programmer or cn,gi IIccr’s judgmcl]t as documented on the form
concerning which was the kcy cause of tllc observed l)roMcIn. Additional discussion of error
catcgoriza,tion is prcscntcd in [18] . An ol~going, multi-project invcstigatiol] will acldrcss the
issue of repeatability (do different analysts classify a givcvl error in the sarnc way?).

~lcarly, the attribution of a kcy hulnan error and. a kcy process flaw to each software
fault ovcrsimp]ifics the cause/effect rc]ationship. 1 lowcvcr, tlIc idcntificatiol~ of tllesc factors
allows the characterization of safety-rc]atcd soflwarc errors ill a. way that relates features of
the dcvclopmcllt process and of the systcm uIIclcr dcvcloplncl!t to the safety conscqucnccs
of those features. Similarly Ll]c association)) of cacl) software fault with a human c!rror, while
unrca]istic (in what scl Isc is a failure to lnwdict dctai]s of systcm bcha,vior an error?), allows
a. useful association hctwccn human factors (such as IJlisllll(lcrstal)(li)lg the rcquirclncmts or
t]Ic uljdcr’]ying }JhySiCa] realities) and t]lcir safety-rc]atcd conscqucJlccs,

11’1. Analysis of Safety -lhlated Software Defects

‘J’hc six tables in the Appclldix show the proportion and IIulnbcr (ill parcnthcscs) of noJl-
safct y-rclatccl software faults, errors, arl d process fl a.ws as compared to safct y- Icl aid software
faults, errors, and process flaws for cac}~ of tl)c two s~)accc.raft. ‘J’hc results arc sumlnarizcd in
tl]c text in a series of bar graphs, ‘J’he bar gral)lls co]ltrast the distribution of error causes for
all tllc safety-related faults with the distril.)uticnl of error causes for all tllc llc)ll-safety-relatccl
faults. AJIy significant diffcrcnccs bCtWCCJI tllc data froln tllc two systems is d{scusscd in the
text with rcfcrcncc to tllc detailed tables ill tl]c Apl)cndix.

Safety-rclatccl software faults account for about IIalf of the total software faulis cliscovcred
during integration and systmn testing 01”1 cac]l of tllc two systc]ns studied (55% for Voyager,
48% for Galileo), I’cw inicrnal faults (e.g., coding errors intcr~la] to a software module) were
uncovcrcd during integration and systc]n testing. AI] cxami?lation of software faults fou]id
later during operations also shows fcw i]ltcrl)al faults. It appears tl)at tllcsc coding errors
arc being dctcctcd and corrcctccl before systcm testing begins. ‘1’hcy tlIus arc outside t}Ic
scope of this paper and arc not discussed further here.

‘J’IIc distribution of program faults for safety-related slid non-safety-rc]atcd faults in tllc
two SyStCJllS is S}1OWI) in l’igurc 2. As can bc SCCII, t}lc two clistributioIls display s imilar
proportions of internal, intcrfacc, and fu]lctional faults. Ful]ctional faul ts (opcratin.g, con-
ditic)llal, or behavioral discrcpa.]lcics froln the ful)ctio]!al rcquirclnmits) account for almost
t}lrcc-quarters of both safety-rc]atcd and non-safety-rcla.tcd program faults. ‘J’hc analysis
summar ized in Fig-urc 2 and dcta.ilcd i]] Table 1 of t}}c Alq~clldix also idcntiflcs iwtcrjace
ja?llls (illcorrcct interact ions with otl]cr systcln colnponcnts, suclI as Lhc tilning or traI]sfcr

5

———.—.——— . . . _—— —__
‘ 1

-—

lntcrnal lntcrfacc Functional

~~ No;l-Safc[y-Related E33 Safely-Related

l’igurc 2: IIistribut;on of l’rogram Faults: Safety-]tclatccl ancl NoI]-Safety-l{clatccl

of data or control) as a significant problcm (3570 of the safety-rclalmcl]jrograln faults on
Voyager;] 9% on Galileo). ‘1’hc high incidence of intcrfacc faults in these complex, cmbcd-
dcd systems contrasts with tlIc low incidence of illtcrfacc faults iIl earlier studies on simJd[!r,
standalone software. (See Section IV for a cliscussion of th;s issue.)

Figure 3 examines the predominant type of program fault, the functional fault, in lnorc
detail, A sigl]ificant. difference bctwccll safety- related and lion-safety-related collditiona]
faults is apparent. ~onditiona] faults (nearly always crroIIcous values on cc)nditiolls or limits)
tend to bc safety-related in the two systems studied. Even thoug]] adjusting tllc values of
limit variables during testing is considered to lx fairly rout;nc, tl}c ease of cl]ange obscures
~hc dificulty of determining the appropriak value and the safety-related conscqucnccs of an
inappropriate limit value. Erroneous values (e. g., of dcaclbands or delay t;mcrs) often involve
risk to the spacecraft by causi~]g inappropriate triggering of an cIIor-Iccovcry Icsponsc or by
failing to trigger a nccclcd IespoIIsc. ‘J’hc association LctwccIi conditional faults and safety -
rclatcd software errors emphasizes the importal]ce c)f specifying the correct, values for any
data used in control decisions in safety-critical, cn lbcclclcd software.

Some diffcrcnccs bctwccn the distribution of faults on tl]c two spacecraft exist (see ‘J’able
2). on Voyager fully IIalf the safety-related functional faults arc attributable to behavioral
faults (the software behaving incorrectly). on Gali]co, a slightly greater pcrccllta.gc is due
to operating faults (nearly always a required but omittcxl opcratiol) in tllc software) than
to behavioral faults. often the omitted opcratio]) involves the failure to perform aclcquatc
rcasonablcncss checks on data input to a module. ‘J’llis frcquclltly results ill an error-rwcovcry
routine being called illa]~]>ro]>liatcly.

B. Relationships Between Program Faults and Human Errors

IIaving classified each program fault, tJIc second stcq) in th(! cause/effect analysis is to trace
backwards in time to the humau factcm illvc)]vcxl ;]] tlIc])rograu] faults tl]at were discovcmxl

L

.

\

during integration
hctwccm IJc major

Operating ~oa(li~ional Bchavioml

~ Non-Safety-Rclateci ~ Safety-Rcla[cd

F’igurc 3: l)istribution of lruncticmal Faults

and system testing. Figure 4 and Figure 5 summarize the relationships
types of program faults and tllc most frcquc])t contributing cn-ors for the

two systems studied. For i7LicrJacc faults, tile lnajor IJuman factors arc either communication
errors within a dcvclopmcnt team or comlnunicatiol] errors bctwccn a dcvclopmcnt t e a m
and other teams. IJI the latter case, a furtl)cr distinction is lnadc bctwccn l]~is~l~l(lcrstal~clillg
harclwarc/software intcrfacc specifications and l~~is~ll-l(lcrstall(lillg tllc intcrfacc specifications
wit}] otllcr software componcllts.

Significant diffcrcnccs appear in the distribution) of error causes bet wccn safct y-rcl at ccl
and non-safety-rc]atcd intcrfacc faults. Figure 4 shows that the primary human error caus-
ing safety-related intcrjacc faults is misunderstood lLar{luTarc/sojtularc intwjam specifications
(65% on Voyager; 48% on Galileo). Exaln])lcs arc faults caused by wrong assumptions about
tllc initial state of relays or by unexpected IIc!artbca.t timing patterns ill a particular operat-
ing mode. On the other hand, the humal] errors causing non-safety-mlatcd intcrfacc faults
arc distributed more cvcn]y among the tllrcc categories. ‘J’hc profiles of safety-related intcr-
facc errors assembled in Figure 4 and ‘J’able 3 of tl]c Appendix cm])hasizc the importance of
dcvclopcrs understanding the software as a set of cmbcdclcd components in a, larger systcm.

I’hc distribution of error causes for safety-related jzLnciio7mZ jaults also differs substan-
tially from the distribution of error causes for non- safety-related functional faults. Figure 5
identifies the primary cause of safety-rc]atcd junctional jaulfs as errors ill recognizing (u?2-
dcrdanding) the requirements (62% on Voyager, 79% on Galileo). On the other hand, non-
safety-related fun ct ion al faults arc more often cau scd by errors in clcployi]jg (implementing)
tl)c rcquircmcnts.

q’able 4 provides further detail. Safety-related conditional faults (erroneous condition
or limit values) arc almost always causecl by mrors il] recognizing rcguiwncnts. Errors in
recognizing rcquircmcnts also cause safety-related o])crational faults (usually the omission of
a required operation) and /d~aviora/ faults more often than errors in deploying rccluircmcnts.
g’able 4 reflects dcficicncics in the documented rcquircmcnts as WC1l as instances of unknown
(at tlic time of rcquircmcnts specification) but IIcccssary rccluircmcnts for the two spacecraft,

7

——— ——— ——. — ..—

Communication Misunderstood Misunderstood
Wi[hin Teams }lardwarc/Soflwarc So f[warc

Interface]ntcrfacc

~ Non-Safety-Relale.d ~ Safety-kclalcd

Figure 4: l{oot Causes (l Iulnan Brrors) of Intmfacc Faults

_—-..
Rcqaircmcnt
Recognition

Rcquircmcnt
Dcploynlcnt

~ Non-Safely-Related ~ Safety-Related

Figure 5: ltoot Causes (Iluman Errors) of Functional Faults

*

F 7
,. -,,. . . . ,,, ,,, . , , ,,, ,,,,,:. .:, ,,, ,W, ,:, ,,, ,,, ,,,.,., .,, ,, j,,,,,,,,,,.:.: ,,:,.,: y ,,.,; ,,,: ,,. :..: :::; 1:.:.

Interfaces Not Anomalous
Me.ntified/UndcrstOocl 1 Iarclwarc Behavior

~ Non-Safety-Rclawl EM Safely-Relatecl

Figure 6: Process Flaws (Control of Systcm (~omp]cxity) Causing Interface Faults

]n summary, difJicultics with rcquircmcnts is tl]c most common human error causing the
safety-related software errors which have persisted until integration and system testing in
these two systems. The tables point to errors in understanding the rcquircrnents spccifica-
tio]ls for the software/systcnl interfaces as tl]c lnost frequent cause of safety-rclatccl intcrfacc
faults. Similarly, errors in recognizing t}lc rccluircmcnts is the most frcqucllt cause leading
to safety-related functional faults.

C. Relationships 13etwccn Human Errors and Process Flaws

]n tracing backwards from the program faults to their sources, features of the sYstcm-
dcvclopmc~lt process can bc identified which facilitate or cnab]c the occurrence of errors.
l)iscrcpancics between the dificulty of tllc problcln and the mca.ns used to SOIVC it may
permit Ilazardous software errors to occur [5].

‘1’he third step of the cause/effect analysis thcrcforc associates a pair of process flaws wi$h
cacll program fault [1 8]. The first element in the pair identifies a process flaw or inadequacy
ill the control of the system complexity (e.g., rcquircrncnts which arc not discovered until
system testing). The second element of the pair identifies an associated process flaw in the
communication or devclopmeni methods used (c.g,, inl~)rccisc or unsystelrratic specification
methods) .

‘1’I]c two elements of the process-flaw J)air arc c]oscly related. Frcqucnt]y, as is discussed
in Sect. V, a solution to onc flaw will provide a solution to the rcla.tcd flaw. 1~’or example, the
lack of standardization cvidcncccl by an ambiguous intcrfacc specification (an inadequacy in
the control of systcm comp]cxity) and the gap in intcrteam communication cvidenccd by a
misunderstood intcrfacc specification (an inadequacy in the communication methods used)
might Loth bc addressed by tllc project-wide a.cloption of the same CASE tool.

1~’igurc 6 relates interface faults al]cl their human causes to process flaws involving systcm
comp]cxity. The figure shows that the process flaw interfaces inadcguatcly identified or
understood, a flaw which involves control of system complexity, is often associated with

9

.——.. .——

Undocumented Interface Communication Undocunmhxl
ln~crface Design Ret Wccn IIardwarc
Rcquircnlcnts Tcan~s Rchavior

~ Non-Safety-Related H Safety-Related

Figure 7: Process Flaws (Communication/lJcvclolJlncnt Methods) Causing lntcrface Faults

both safct y-dated and non-safct y-related intcrfacc faults. 1 lowcvcr, safety-related and non-
safety-related intcrfacc faults differ in that anomalous hardware behavior is a more significant
factor in safety-related than in IIon-safety-related intcrfacc faults. It is often associated with
intcrfacc design during systclm testing, a.nothcr indication of a unstable software product.

Figure 7 relates intcrfacc faults to process flaws invo]villg communication or clevclopmcnt
rncthods. Again, diflcrcnccs in the clistribution of causes for safety-related and non- safety-
rclatcd interface errors is cvidc]]t. Undocumented interface requirements is the most frequent
flaw for non-safety-related intcrfacc faults, while u?~docu?ncnf.cd hardware behavior is the
most frequent flaw for safety-related interface faults.

‘J’ablcs 5 and 6 show that there arc significal)t differences in the process flaws that cause
errors bctwccn the two spacecraft.]ntcrfacc design during testing is involved in almost
one-fifth of the safety-critical intcrfacc faults on Voyager, but in none of them on Galileo,
‘Yhis is because on Voyager a set of related hardware problems gcncratcd nearly half the
safety-related intcrfacc faults. on the other Land, the probleln of intcrfacc specifications
that arc known but not documented is more common on Galileo. ‘J’his is perhaps due to the
incrcascd complexity of the Galileo intcrfaccs, With regard to functional faults, although
missing rcquircme~lts arc a frequent process flaw OIL Loth spacecraft, on Voyager inadequate
design also occurs frequently, while on Galileo imprecise specifications often occur.

Figure 8 summarizes the relationships between process flaws involving control of system
complexity and fun ctional faults. For junctional faults, rcquircmcnts not identified and
requirements not understood arc the most common complexity-control flaws. Safety-related
functional faults arc more likely than non-safety-rc]atcd functional faults to be caused by
requirements which have not been identified (55Y0 vs. 41 Yo).

With regard to process flaws involving cm~~munication or development methods, Fig-
ure 9 shows that missing requirements arc involved i]] nearly IJalf (42$XO) of the safety-related
functional faults, but in only 25% of tl]c non-safety-related functional faults, lmprccisc or

10

I

I ——
Requircmnls Rcqoircmcnls
Not Identified Not Understood

~ Non-Safety-Related ~ Safety-Related

l’igurc 8: Process l“laws (Control of Systcm Complcxiiy) Causing Functional Faults

1.
Specifications Missing lncomplc[c Inadequate Coding

Ififi~~\~cn- Design F,rmrs

❑ Non-Safc[y-Related W Safely-Related

l’igurc 9: Process Flaws (Colml~l~lllicatioI1 /llcvcloJ~lllcl-lt Methods) Causing Functional Faults

11

[. ,

__ ———-. .—

Interface Iiault

[~::;”-:l.— : -

[_.._..._...__: ---

_..——i

I 1 ------
i.- —- —-. ..—.

Communication l;ailurv To
Iktwccn Tcarns Recognim Requirements

1:-. .

; j
(— – - .——- — - - - - - — - – - . - . - – - - - - - 1 .—- - - - - — — – — - — — — — — – — — —

Interfaces Not Kc.quircments Not

Identified/Understood Identified
+

Undocomenlcd 1 Iardwarc +

Behavior Missing Requimuent

Figure 10: F’requcnt Cause/Eflcct ltclationships for Safety-lielatcd Software Errors

unsystematic spcci..caiions arc also more often a factor in safety-related than in non-safety -
rclatccl functional faults. ‘J’hesc results sug~cst tl]at tl)c sources of safety-rclatccl software
errors lic farther back in the software clcvcloplncl)t process-in inadequate specification or un-
derstanding of requirements-whereas the sources of non-safety-related errors more commonly
involve inadequacies in the design phase.

Figure 10 summa, rizcs these results graphically. It displays two of the cause/effect mech-
anisms that occur frcqucnt]y in the two spacecraft, resulting ill safety-related interface faults
an c1 safct y-related functional faults.

IV. Comparison of Results with Previous Wc)rk

Although software errors and their causes have been studied extensively, tllc current work
differs froln most of the prior investigations in the following four ways:
1) g’hc software c}loscn for analysis in most studies is not cmbcclclcd in a complex systcm as
it is here. ‘J’hc consequence is that the role of intcrfacc specifications in controlling software
hazards IIas been undcrcstimatcd.
2) Un]ikc the currc]lt papcrj most stuclics have analyzed fairly simple systems in familiar and
wcl]-understood application domains. Conscquc]ltly, fcw software faults have been found
during system testing in most studies, lcacling to a gap in knowledge regarding the sources
of these more-persistent and often more hw~ardous faults.
3) Most studies assume that the rcquircmcnts specification is correct. On the spacecraft,
as in maliy large, comp]cx systems, the requirements evolve as knowlcclgc of the system’s
behavior and the problcm domain evolve. Similarly, most studies assume that requirements
arc fixed by the ti]nc that systems testing begins. ‘J’llis leads to a underestimation of the
impact of unknown requirements on the scope and schcdulc of the later stages of the software
development process.
4) ‘J’hc distinction bctwccn causes of safety-critical ancl non-safety-critical software errors has

12

,

not been adequately invcstigatccl, Efforts to cllhancc systcm safety by specifically targeting
the causes of safety-related errors, as clistinguished from the causes of all errors, can take
advantage of the distinct error mechanisms, as dcscribccl in Sect. 5.

A brief description of the scope and results of soInc related work is given below and
compared with the results prcscntcd in this paper for safety-critical, cmbcdclccl comput[!r
systcms$

Nakajo and Kumc categorized 670 errors found during ihc software dcvclopmcnt of two
firmwar-c products for controlling measuring instruments and two software products for in-
strument mca.surcmcnt programs [I 8]. Over 90% of the errors were either intcrfacc or func-
tional faults, similar to the results reported here.

Unlike the results described here, Nakajo and Kumc found many conditional faults. It
may bc that unit testing, as on the spacecraft) finds III~IIY of the conditional faults prior
to systcm testing. While the kcy human error on tllc spacecraft involved communication
bctwccn teams, the kcy human error in their stucly involved communication within a dcvcl-
opmcnt tca?n.]Ioth studies identified complexity tLncl documentation deficiencies as issues.
1 lowcvcr, the software errors on the spacecraft tcndccl to invo]vc inherent technical complex-
ity, whi]c the errors identified in the earlier study involved complex correspondences between
rcquircmcnts and their implementation. Finally, the kcy process flaw that tkcy idmtificd
was a lack of methods to record known interfaces and dcscribc known functions. in the
safety-c.ritical, cmbcdclcd software on the spacecraft, the flaw was more often a failure to
identify or to understand the rcquircmcnts.

Ostrand and Wcyukcr categorized 173 errors found during the development and testing
of an editor systcm [21]. Only 2% of the errors were found during systcm testing, reflecting
the simplicity and stability of the interfaces ancl rcquircmcnts. Most of the errors (61 Yo)
were found instead during function testing. Over half tllcsc errors were caused by Omkkms,
confirming the findings of the present stucly that omissions arc a major cause of software
errors,

Schncidcwind and IIoffmann [24] categorized 173 errors found during the dcvclopmcnt of
four small programs by a single progra~mmcr. Again, there were no significant interfaces with
hardware and little system testing. T’hc most frcc]ucnt class of errors, other than coding and
clerical, was design errors. All three of tllc most common design errors--cxtrcmc conditions
ncg]cctcd, forgotten cases or steps, and loop co~ltrol errors- arc also common functional
faults on the spacecraft.

Both the findings prcscntcd in [21, 24] and in this paper confirm the common cxpcricncc
that early insertion and late cliscovcry of software errors maximizes the time and effort that
the correction takes. Errors inserted in the rcquircmcnts and design phases take longer to
find and correct than those inserted in later phases (bccausc they tend to involve comp][!x
software structures). Errors discovered in the testing phase take longer to correct (bccausc
they tend to bc more complicated and di~cu]t to isolate). I’his is consistent with the results
in [20] indicating t}~at more severe errors take longer to discover than lCSS scvcrc errors
during systcm-level testing. Furtllcrmorc, this effect was found to bc more pronounced in
more complex (as measured by lines of code) software.

The work done by Endrcs is a direct forcrul]l]er of Nakajo and Kumc)s in that Endrcs
backtracked from the error type to the tccllnica] a]]d organizational causes which lcd to each
type of error [5], Moreover, bccausc he studiccl tile systcm testing of an operating systcm, the

13

software’s inimraction with the llarclwarc was a source of concern. FJnclrcs noted the clifflculty
of precisely specifying functions] dcmancls on the systems hcfore the programmer had seen
their effect on the dynamic behavior of the systc]n. IIis conclusion that better tools were

needed to attack this problcm still holds true ciglltccn years after he published his study.
Of the 432 errors that Endrcs analyzed, 46% were CITON in ~mdc~standillg Or communi-

cating the problcm, or in the choice of a solution, 3870 were errors in implementing a solution,
and the remaining 16% were coding errors. ‘J’hcsc results arc consistent with the finding here
that software with many systcm interfaces displays a llighcr pcrccntagc of software errors
involving understanding rcquircmcnts or the systcm implications of alternative solutions.

Eckhardt ct al., in a study of software rcclundancy, analyzccl the errors in twenty indc-
pcndcnt versions of a software component of an inertial navigation systcm [4]. ‘They found
that inadequate undcrstanc]ing of the specifications or the underlying coordinate systcm was
a major contributor to t}~c program faults causing coincident failures,

A d dY,]Ooking a,t tbc types of errors that caused safety problems in a]argc, real-time

control systcm, concluded that the design complexity inherent in such a systcm requires
hidden interfaces which allow errors in non-critical software to aflcct safety-criticaJ software
[]]. ‘J’his is consistent with Selby and l~asili’s rcsu]ts when they analyzed 770 software errors
during the updating of a library tool [25]. Of tllc 46 errors documented in trouble reports,
70% were categorized as “wrong” and 2870 as ‘(missing. “ ‘J’hey found that subsystems that
were highly interactive with other subsystems hacl proportionately more errors than lC S S

interactive subsystems.
Chill arcgc ct al., classified defects from several operating systclns and clatabasc manage-

ment systems according to type and trigger (c. g., bollndary condition, excqtion handling)
etc.) [2]. By comparing tllc distribution of defect types to tllc cxpcctccl distribution for each
st agc of development, the progress of a product’s d evelopmcnt can bc monitored. Based on
the authors’ expcricncc with similar products, tllcy expect to find function defects peaking
at design testing, interface errors peaking at integration testing, and timing/serialization
errors peaking at systcm testing for the systems they analyze. ‘J’hc prcvalcncc of intcrfacc
and timing errors is consistent with the data from the two spacecraft studied here. IIowever,
the spacecraft both continue to display functional defects throughout systcm testing. This
is probably attributable to the continued evolution of software rcquircmcnts driven by the
hardware, the interplanetary cnvironrnent, and unique mission science needs.

]Jcvcsc)]l listed a set of common assumptions that arc often false for control systems,
resulting in software errors [13]. Among these assumptions arc that the software specification
is correct, that it is possible to predict realistically the software’s execution environment
(e.g., the existcncc of transients), and that it is possible to anticipate and specify correctly
the software’s behavior under all possible circumstances. g’hcse assumptions tend to bc
true for the simple systems in which software errors have been analyzed to date and false for
spacecraft and other large, safety-critical, crnbeddcd systems. ‘1’bus, while studies of software
errors in simple systems can assist in understanding internal errors or some functional errors,
they are of ICSS help in understanding the causes of safety-related software errors, which tend
heavily to involve interfaces or recognition of complex requirements.

Similarly, standard measures of the internal c~mplcxity of mod~llcs have limited l]scfulncss
in anticipating software errors during systcm testing. It is not the internal complexity of a
module but t})c complexity of the moclulc’s connection to its environment that yields the

14

●

persistent, safety-rclatccl

V. Discussion

errors seen in the cmbcddccl systems here [1 O].

‘J’hc results in Sect. 111 indicate that safety-rclatccl software defects arc distributed somewhat
diffcrcnt]y over the set of possible causes than non-safety-related software defects in tllc
systems studied. Finding the prevalent causes of safety-related software errors in these two
systclns may help guide the dcvclopmcnt of strategies to rcducc such errors in other similar
systems. By targeting the causes of safety-related errors, systcm safety may be directly
cnhanccd.

‘1’hc results of the analysis of sa.fcty-rc]atcd software errors in the two spacecraft can be

i]ltcrprctcd as guidelines for preventing such errors in future, similar systems.

1 .]“OCILS o n t h e inierjaces bCtWCCll the SOjlUMIY: (L i d thC SIJdeln in CZnCLhJZiIMJ i?]lt? lNOblC7Tt

domain, since these interjaccs are a major source of sajety-relaicd sojlulare errors.
‘J’hc traditional goal of the rcquirenlcnts analysis phase is the specification of the soft-

ware’s external interface to the user. ‘l’his clcfinition is inadequate when the software is
dccp]y cmbcddcd in larger systems such as spa.cccraft, advanced aircraft, air-trafic control
units, or manufacturing process-control facilities. In such systelns, the software is oftc!n
physically and logically distributed among various]lardware components of the systcm. ‘J’hc
hardware involved may bc not only computers but also sensors, actuators, gyros, ancl scicncc
instruments [1 1].

Specifying the external behavior of the software (its transformation cjf software inputs
into software outputs) only makes sense if the interfaces bctwccn the systcm inputs (e.g.,
cnviron]mcnta] conditions, power transic~lts) and the software inputs (e.g., monitor data)
arc also spccificd, Similarly, specifying the interfaces- cspccia]ly the timing and clcpcndency
relationships- bctwccn the software outputs (e. g., star idcntifieation) ancl systcm outputs
(e.g., closing the shutter on the star scanner) is ncccssary. [6, 12]

Systcm-dcvclopmcnt issues such as timing (real-time activities, interrupt handling, fre-
quency of sensor data), hardware capabilities amd limitations (storage capacity, power tran-
sients, noise characteristics), communication links (bufIcr and intcrfacc formats), and the
cxpcctcd operating cnvironlmcnt (tcmpcraturc, pressure , radiation) need to bc reflected in
the software rcquirerncnts specifications bccausc they are frequently sources of errors involv-
ing interfaces.

‘J’iming is a particularly di~cult source of safety-related software intcrfacc errors since
timing issues arc so often integral to the functional correctness of safety-critical, cmbcd-
dcd systems, ‘.l’iming dcpcndencics (e.g., liow Iollg input data is valid for making control
decisions) should bc included in t}lc software intcrfacc specifications. Analytical models or
simulations to understand systcm interfaces arc particularly useful for complex, cmbcddcd
systems.

2. ldentijy sajety-critical hazards early in tlLc requirements analysis.
These hazards arc constraints on the possib]c clcsigns ancl factors in any contemplated

tradeoffs bctwccn safety (which tends to encourage software simplicity) and incrcascd func-

15

tiona]ity (which tends to encourage software complexity) [12, 25]. Many of the safety-related
soft ware errors in the two spacecraft involve clat a ob jccts or proccsscs that would bc t argctcd
for special attention using hazarcl-detection tccllniqucs such as those dcscribcd in [9, 13].
l?arly detection of ihcsc safety-critical objects and incrcascd attention to the software oper-
ations that usc thcm might forestall associated safety-related software errors.

3. Use jormal spccijication techniques in addiiion to naiural-language sojlware requirements
specifications.

J,ack of precision and incomplete rcquircmcnts ICCI to many of the safety-rc]atccl software
errors seen here. Enough detail is needed to cover all circumstances that can bc envisioned

(component failures, timing constraint violations, expired data) as WC1l as to document all
environmental assumptions (e.g., how C 1 OSC to the sun m instrument will point) and as-
sumptions about other parts of the systcm (maximum transfer rate, conscqucnccs of race
conditions or cycle slippage). ‘J’hc capability to dcscribc clyna~nic events, the tilning of pro-
ccss interactions in distinct computers, dcccntralizcd supervisory functions, etc., should bc
considered in chooosing a formal method [3, 6, 17, 22, 23, 26]. Since clnbcddcd software
systems arc often quite la.rgc, formally specifying or analyzing the entire systcm may not
bc feasible. Data on causes of safety-related errors may help guide the selection of the por-
tions of the software most likely to benefit froln tlic a.ddcd rigor of formal methods. In a
spacecraft currcntl y un dcr dcvclopmcnt, for exalnplc, error rccovcry software and critical
int crfaccs have been idcntiflcd for cxpcrimcnts in formal spccifi cation.

~. l%omote injormal communication afn.ong kams.
Many safety-related software errors resulted from onc i]]diviclual or team rnisunclcrstand-

ing a rcquircmcnt or not knowing a fact about tllc systcm that member(s) of another dc-
vclopmcnt t cam knew. ‘J’hc goal is to modularize rcsl)onsibi]ity in a dcvclopmcnt project
witl]out modularizing communication about the systcm under dcvclopmcnt. ‘J’hc identifica-
tion and tracking of safety hazards in the two systems dcscribcd here, for example, is clearly
best done across team boundaries,

5. As requirements evolve, communicai.e the changes i.o the development and test teams.
This is both more important (bccausc t}~crc arc more rcquirclncnts cl]angcs during design

and testing) and more difficult (bccausc of the nu~nbcr and size of the teams and the length of
the dcvclopmcnt process) in a lar.gc, embcddccl systcm than in simpler systems. in analyzing
the safety-related software errors, it is cvid(!nt that the determination as to who needs to
know about a change is often made incorrectly. Frcqucnt]y, changes that appear to involve
only onc team or systcm component cnd up a,frccting other teams or components at some
later date (sometimes as the result of incompatible changes in distinct units).

~hcrc is also a need for faster distribution of cllangcs that have been made, with the
update stored so as to bc fingertip accessible. CASE tools oflcr a possible solution to the
difficulty of promulgating change without increasing paperwork.

‘J’hc prcvalcncc of safety-related software errors involving misunderstood or missing rc-
quircmcnts points up the inadequacy of col]sistcncy checks of requircmc]lts al]d code as a
means of demonstrating systcm correctness [1 2]. Code that implements incorrect rcquirc-
mcnts is incorrect if it fails to provide nccdcd systcm behavior.

16

Similarly, generating test cases from misunderstood or missing rcquircrnents will not test
systcm correctness. q’raccabilityo frcqllirclllcl-]tsa l)d automatic test generation from spccifi-
cations offers only partial validation of complex, cmbcdclcxl systems. Alternative validation
and testing methods such as those dcscribcd in [1 1, 13] offer greater coverage.

6. Include requirements for “dcjensivc design” [1 9].
Many of the safety-related software errors involve inadequate software responses to cx-

trcmc conditions or cxtrcmc values. Anomalous hardware behavior, unanticipated states,
events out of order, and obsolete data all contribute to safety-related software errors on the
spacecraft.

lhrn-tirnc safety c}lccks on the validity of input data, watchdog timers, delay timers, soft-
ware flltcrs, software-imposed initialization conditions, additional exccpt,ion handling, and
assertion c}]ccking can bc used to combat the many safct y- cri ti cal software errors involving
conditional and omission faults [13]. ltcquiremcnts for error-hanclling, overflow protection,
signs] saturation limits, heartbeat and pulse frequency, maximum event cluration, and sys-
tcm bcl)avior under uncxpcctcd conditions can bc addccl and traced into the design. Many
safety-related functional faults involve error- rccovcry rout incs being invoked inappropriate] y
bccausc of erroneous limit values or bad clata.

IIackward analysis from critical failures to possible causes oflcrs onc check of how dc-
fcnsivc the rcquircmcnts and design arc [14], l{cc~uircmcnts specifications that account for
worst- case scenarios, models 1A at can predict tllc range of possib]c (rather than allowable)
values, and simulations that can cliscovcr uncxpcctcd interactions before systcrn testing con-
tribute to the systcm’s dcfcnsc against hazards.

VI. Summary and Future Work

]n large, cmbcddcd systems such as the two spacecraft in this study, the software rcquirc-
mcnts change throughout the software dcvclopmcnt process, even during systcm testing.
‘J’his is largely duc to unanticipated behavior , dynamic changes in the operating environ-
ment, and complex software/hardware and software/software interactions in the systems
being dcvclopcd. Controlling rcquircmcnt changes (and, IIcnce, the scope and cost of devel-
opment) is difllcult since the changes arc often promptccl by an improved ul~dcrstanding of
t}]c software’s ncccssary interfaces with the physical components of the spacecraft in whic}l
it is cmbcclclcd. Comp]cx timing issues and harclwarc idiosyncrasies often prompt changes
to rcquircmcnts or to design solutions.

‘1’hc analysis prcscntcd here of the cause/effect relationships of safety-rc]atcd software
errors pinpoints aspects of systcrn complexity which merit additional attention, Spcciflcally,
the results have shown that conditional faults (e.g., condition or limit va]ucs) arc highly
correlated with safety-related software errors. Operating faults (especially the omission c)f
run-time rcasonab]cncss checks on data) arc also IIighly correlated with safety-related soft-
ware errors. Unknown, undocumented, or erroneous rcquircmcnts frequcntl y arc associated
with safct y-rclat cd software errors as WC]]. 11 ard ware/software int crfaces h avc been shown
to bc a frequent trouble spot because of the lack of communication bctwccn teams.

‘1’hc results presented in this paper indicalx! a need for better methods to confront the

17

real-worlcl issues of clcvcloping safety-critical, cmbcclclccl software in a complex, distributed
systcrn. Future work will bc dircctcd at incorporating knowledge of the distinct. error mech-
anisms that produce safety-related software errors into the rcquircmcnts anaJysis and vali-
dation proccsscs. Follow-on stuclics will cwaluatc t})c aclcquacy and repeatability of the error
classifications used here. Additional cxpcrimcnts to test the proposed guidelines both in
similar, future systems and in a cross-section of clnbcddcd software WOUIC1 be useful. Woxk
is also nccdcd on specifying how the results prcsmltcd in this paper can bc used to predict
more prcciscly what features or combinations of factors in a safety-critical, embedded systcm
arc likely to cause time-consurning and hazardous software errors.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

]!. A. Addy, “A Case Study on lso]ation of Safety-Critical Software,” in Pmc (M Annual
Conj on Comyuter Assurance. NISq’/1ElllI;, 1991, pp. 75-83.

IL Chillarege, et al., “Orthogonal IIefect Classification- A Concept for 111-1’recess Measure-
ment s,” IEEE Trans Sojtware Eny, 1S, 11, Nov 1992, pp. 943-956.

A. M. Davis, Sojtware lkguirernents, Analysis and Syccification, IIhlglewclod Cliffs, N. J.:
]’rcnticc Hall, 1990.

D. E. Eckhardt, et al., “An llxperimental l;valuation of Software Rcclundancy as a Strategy
for improving J{eliability,” IEEE Tram Sojlworc]hq, 17, 7, July 1991, pp. 692-702.

A. Endrm, “An Analysis of Errors and ‘J’heir Causes in Systems Programs,” IL’I;E Tram
Sojtwarc Eng, SE-I, 2, June 1975, IJp. 140-149.

E. M. Gray and IL 11. Thayer, “ltcquircxncnts, “ in A erosymce Sojlwure Engineering, A Collec-
tion of Concepts. Ed. C. Anclcrson and M. l)c)rf)nan. Washington: AlAA, 1991, 3Jp, 89--121.

AN SIIIIIEE Standard Glossary of Software Engi]lecring ‘J’cmninology. New Ycmk: J1’HH;, 1983.

II;EE Standard Dictionary of Measures q’o l’roducc ltcliablc Software, Std 982,1-1988, Ncw
York: IEEE, 1989.

M. S. Jaffe ct al., “Software ILequircments Analysis for lteal-~’ime Process- Control Systems,”
IEEE Trans Sojtwarc Eng, 17, 3, March 1991, pp. 241-258,

1’. JaJote, An lntcgratcd Approach to Software lA2ginceri?2g. New York: Springer-Vcrlag, 1991.

J. C. Knight, “Testing, “ in Aerospace Sojtwclre Engineering, A Collection oj Concepts. Ed.
C. Anderson and M, l)orfman. Washington: AIA A, 1991, pp. 135--159.

N. G. Lcveson, “Safety,” in Aerospace Soj[umre Lhgincering, A Collection oj Concepts. Ed.
C. Anderson and M. Dorfman. Washington: AIA A, 1991, pp. 319-336.

N. G. Lcveson, “Software Safety in lhnbcdded Coml)utcr System s,” Commun A CM, Vol. 34,
No. 2, lrcb 1991, pp. 35--46.

N. G. Lcvcson and P. IL Harvey, “Analyzing Software Safety,” lL’L’E I’ranscdions on Sojtware
Engineering, SE-9, 5, Scpt 1983, pp. 569-579.

18

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Karan L’l]eurcux, “Software Systmms Safety Program IWOP, }’hasc A ILcport,” Internal
Document, Jet l’repulsion laboratory, April 19, 1991,

IL Lutz, “Analyzing Software ltcquiremcllts l;rmrs in Safety-Critical, Embedded Systems,”
l’roc IA’EE lnternat Symp on ltequirements Engi?lccring. I,OS Alamitos, CA: 1 EEE Computer
Society Press, 1993, pp. 126-133.

IL ~Jut~ a u d J, S. K. Wong, “Detecting Unsafe Eryor l{ccovcry Schcdulcs,” lE1jl~ I’rans
Sojtware Eng, 18, 8, Aug, 1992, pp. 749-760.

T. Nakajo and 11. Kumc, “A Case IIistory Analysis of Software Error Cause llflcct ltclatio]l..
ships,” IEIH1 Trans Sojtware Eng 17, 8, Aug 1991, pp. 830-838,

}’. G. Neumann, “’1’hc Computer-ltc]atcd ltisk of the Year: Weak Links and Corrclatccl
Events, “ in }+OC tith A nnua/ C’Onf on Computer Assurance. NIS’J’III;EE, 1991, pp. 5-8.

A , 1’. Nikora, “lhror])iscovery ILate by Severity Category and ‘J’imc to Repair Software
l~ailurcs for l’hrec J] ’I, Flight Projects,” Illt.crlial l)ocumcnt, Jet Propulsion laboratory,
1991.

‘J’. J. ostrand and 1;. J. Wcyukcr, “Collcctillg allcl Categorizing Software Error Data in all
industrial IInv;ronmcnl,, “ q’hc Journcil Of 5’ystc171s (IIM! $Ojh[)(ll’(!, d, 1984, 1)]). 289-300.

l’roc Berkeley Workshop on 7’emporal and lkal- 7’imc Specification. Eels. P. 11. 1,adki n and F.
11. Vogt. IIerkclcy, CA: lntcmationa] Computer Scicncc lnstitutc, 1990, ‘J’1{-90-060,

,1. l{ushby, “l~ormal Methods ancl l)igital Systc]Ils Validation for Ai]bornc Systems,” CSI,
q’ccllnica~ l{cport, SIU-CS1,-93-07, Nov 1993.

N. l?. Schncidcwind and 11,-M. IIoffmarui, “An Exl)crimcnt in Software Error l)ata Collection
and Analysis,” ll~lJll Trans Sojlu~are lhg, SE-5, 3, May 1979, })p. 27 G-28G.

R. W. Sclby and V. R,. IIasili, “Analyzing lhror-1’ronc Systcm Structure,” IL’l;lt; Tram Soft-.
ware Eng 17, 2, Fchr 1991, pp. 141-152.

J. M. Wing, “A Spcciflcr’s IIltroductioll to For]nal Methods,)’ Computer, vol. 23, Scl~t 1990,
pp. 8-26.

Appendix

iVon-sajcty-Ikl utcd Sajciy-Iielatcd
Progrum hulls l’rogram Faults

Voyager (60) Galileo (132) Voyager (74) Galileo (121)
“liiiri;:i-’—–-–-2!z ‘-””” (1) 4%” (5)””

-. o%.. _____ ____________(2j_
(o) 2%

lntcrfacc 33% (20) 18% (24) 35% (26) 19% (23)
Functional 65% (3 9) 7 8 % (103) .$5_% (4 8) 79%- (96)

‘1’able 1: (hssijlcaiion oj l’rogram Jkults

19

—. -.~---------------- . ..-. ———. --.—. ________
Non-S[ljely-lielct tccl s~j~~y-lielated “n

II Functional Faults Functional Faults II

E_...___..__.=====:=_=_:_____________________ ___V o y a g e r G’alilco (103) Voyuqer(dtl) G a l i l e o (9 6)——-.—.-—.——- -————- .. —.—. — .— _ .—— —— ___ _____ .. J._ ____________ _______
O~erating 26% (10) 4 3 % (44) 19% (9) 43% (41)
Conditional 20% (8) 4% (4) 31% (15) 18% (17)
IIchavioral 54% (21) 53% . -_... (?!1-.-2!3.-..-(:!1___ ____ __(55)__:09f 1—————

‘1’able 2: Classification oj Functional Yaulh

Nort-tSijety:llc l(~tc(i Sujdy-lkldfxl
hlterjacc l“aults lntcrjacc l“aults

voyager (2 0) Galileo (24) voyager (2 6) G’alilco (2 3)..—
1. lntra-tc.am Communication 5% - (1 ~ 33% ‘“ -[~) ““---~%” ”””-– ““””(~) ““””j;2-~—–--(5j-

11. lntertcam Commullic,ation:
11 ardwarc/Soft,warc lntcrface 30% (C) 3 8 % (9) 65% (17) 48% (11)
Software IIitcrfaccs 65% (1 3) 29% (7) 2 7 % (7) 30% (7)--

g’able 3: liclationsllips oj lioot Causes (Iluman Ihrors) 10 lntcrjacc Faults

N07i-.~i1jcty-itc[u tcii -”- ‘“- -”- ‘--” sifeFy:jl;iujcJ”” –””
l“urtct ional l’aults functional 1(’aulls

Voyager (39) Galileo (103) Voyager (J8) Galileo (96)
1. l{cquircmellt Rccognit.ion:
Operating 10% (4) 17% (17) 8% (4) 33% (32)
Con dition al 8% (3) 0% (1) 25% (12) 16% (15)
1 lch aviora; 10% (4) 29% (3 0) 29% (14) 30% (29)
‘J’otal 28% (11) 4 7 % (48) 62% (30) 79% (76)
11. ltcquircmcnt Deployment:
Operating 15% (6) 26% (2 7) 11% (5) 9% (9)
Conditional 13% (5) 3% (3) 6% (3) 2% (2)
IIchaviora] 44% (17) 24% (25) 21% (10) 9% (9)
Total 72% (28) 53% (55) 38% (1 8) 2 1 % (20}.

.-

g’able 4: licla.tionships oj lioot Causes (Iluman l;7>rors) to Functional Faults

20

. ..— —. .—— —.. —— - .——.
A~oli-s(ljcty-ltcl(l tc(l safety- liclutccl

Inkrjm hllh lntcrjace Fads
V o y a g e r Galilco(2~) V o y a g e r G a l i l e o

1, Conl,rol of System Conlplcxity: -
—.

interfaces not undcmtood 90% (~8) 83% (20) 54% (14) 87% (20)
IIardwarc anomalies 10% (2) 17% (4) 46% (12) 13% (3)—_——._.—— .—_-—_— — ..-__—. .—. _ .—. —._.. . -. —.- ._
11. ColllnluIlicatioI1 /lJevclo~JI1lcllt:

— . .. —. ——. -

lnt crfacc specifications 35% (7) 42% (10) 8% (2) 35% (8)
lntcrfacc design lags 35% (7) 4% (1) 19% (5) o% (o)
lntcrl,cam communication 20% (4) 21% (5) 27% (7) 35% (8)
llnclocumc]ltcd hardware 10% (8) 46%(2) 33% . -.=-====.:.(!.2).._!!fi._=g. .-—.. . .——. .—. .

Tablc5: l’roccss.WLuM Cousing lntcfface Faults

.
No?l-,s(ljety-l[cli tc(l”” ‘“ -“’”sijciyxeiated-”
lf’unctional J’aults Junctional 11’aults

V o y a g e r Galilc:o (1 0 3) V o y a g e r (,/8) G a l i l e o. . ..—. .—— —.—-.. .— ___
1. Control of Systcnl Complexity:

.

ILcquiremcnts not identified 28% (11) 4 6 % (4 7) 44% (21) 00% (58)
l{cquircmcnts not understood 72% (2 8) 54% (56) 56% (27) 40% (38)
11. Conlnmnication/llcvclopmcnt
Causingljrrorsin llcquircmcnts
Recognition:
lmprccisc specification 10% (4) 18% (19) 21% (10) 38% (36)
Missing requirclncnts 18% (7) 28% (29) 42% (20) 42% (40)
Colllllll]Ilication/ l)evcloJ~lncl[t
Causing l’;rrorsin ltequircments
l)c~doymcnt:
incomplete doc.umclitation 10% (4) 12% (12) 2% (1) 8% (8)
l’crsistcnt cocling errors 28% (11) 1 3 % (1 3) 10% (5) 5% (5)
lnadcquatc design 33% (13) 29% [30) 25% (12) 7% (7)

.- -— . ..——.

‘1’able 6: l’roccssl(’lauw Causing l“unctional Faults

21

b
&

4

.

Index Terms
Software errors, software safety, requirements analysis, embedded software, system testing, software
sl)cciflcation, safety-critical systcrns, spacecraft,

22

